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Automated speech assessors (ASA) promise cheap, efficient and scalable scoring of 
student performance. Such benefits have led to the application of ASA in a range of 
contexts, including high-stakes testing as well as classroom and formative 
assessment. Yet there remains concern over how effectively ASA can measure 
certain features of speaking, such as discourse, coherence and task relevance 
(Weigle, 2010), and unease over a lack of transparency in disseminating the 
technologies powering them (Enright & Quinlan, 2010).  In effect, we often just don’t 
know how accurate or fit for purpose ASA are. To explore these issues, I will discuss 
a few key principles underpinning ASA, with reference to an autorated low-stakes 
test developed by the East Asia Assessment Solutions Team (EAAST) at the British 
Council. I aim to show how test developers and educational practitioners can add 
value in the development of ASA, whilst highlighting key questions to consider before 
we adopt such systems in our own learning or assessment contexts.  
 
Automatic Speech Recognition (ASR) 
The first challenge for ASA is to change the purely audial signal of speech into a 
form that machines can work with – written text. To achieve this, ASA use automatic 
speech recognition (ASR), the technology allowing virtual assistants and smart 
speakers to ‘understand’ our instructions, which converts the speech waveform into 
a text, or a transcript, of the spoken utterance (see Figure 1). The ASA system is 
only as accurate as its ASR; a poorly performing ASR will affect the reliability of the 
entire system, as incomplete or inaccurate text representations will bias the machine 
scoring of domains such as pronunciation, grammar and lexical expression.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Overview of key ASR components. 
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The accuracy of the ASR depends primarily on the decoding stage, which combines 
output from two key processes, the acoustic and language models (see Figure 1). 
The acoustic model matches sounds from the ‘cleaned’ recording input with a 
suggested orthographic representation (the written text) using a huge database of 
digitally recorded speech segments tagged with their corresponding transcriptions 
(van Moere & Downey, 2016). The language model refines suggestions from the 
acoustic model by identifying the likely word sequences using a large database; 
rather like a predictive text system that ‘corrects errors’ or completes sentences on a 
mobile phone. Such optimization is shown in the following illustrative example 
whereby the language model could deduce from context that ‘sea’ is the most likely 
of the three orthographic representations of ['si:] suggested by the acoustic model. 
 

The man walked by the [see/sea/c].   (acoustic model) 
The man walked by the sea.  (acoustic + language models) 

 
As with predictive text, ASR systems are far from perfect. Accuracy can be affected 
by a variety of factors including (1) quality and relevance of the data used to train the 
models and (2) the predictability of the spoken content. Many argue that 
characteristics of the users (such as age, ethnicity, gender) should be represented in 
the speech data used to train the models (van Moere & Downey, 2016), to avoid 
variations in second language performance (such as L2 accent) affecting the 
accuracy of the ASR system. As a result, we should be asking whether the 
pronunciation characteristics of our learners or test takers are captured in the data 
used to train the acoustic models, and if not, whether the automated scoring of their 
performance will be affected.  
 
As projected users of our placement test were Chinese learners aged 14-18, we 
commissioned a vendor with an ASR trained on a database of Chinese L2 (English) 
speaking samples representing the target age and covering a wide range of regional 
accents. In this way, we achieved a relatively close proximity between the speaking 
characteristics of the test user and the data on which the ASR was trained. However, 
should we launch the placement test in other countries with different L1 accents, we 
would need to validate the ASR using L2 speaking samples from the new target 
population.  
 
Task types and ASA reliability  
Generally speaking, the scoring reliability of ASA increases as the content of speech 
acts becomes more predictable, because the language models in ASR and 
algorithms used in scoring are more accurate when conditions are predictable. For 
these reasons, constrained task types, such as ‘read aloud’ and ‘listen and repeat’ 
are more commonly found in ASA tests than their human-scored counterparts. The 
types of tasks used in a particular ASA raise important questions for the teachers 
and learners who use them. An ASA solution comprising only constrained tasks is 
likely to underrepresent the speaking construct (unless we are only interested in 
pronunciation scoring, for example), whilst an ASA solution comprising open 
response tasks that elicit less predictable content will be more challenging for the 
technology and may lead to lower reliability.  
 
The domain analysis for our test identified description, narration and argumentation 
as key speaking genres, and so we used open response tasks, such as asking 
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learners to describe personal experiences and give opinions on familiar topics, to 
elicit spoken performance (see Figure 2, step 1). We were aware that such a 
challenging choice of task type would put more stress on the ASA and therefore on 
us to demonstrate the validity of the human rating scales and the reliability of the 
machine scoring output. Our responses to these challenges are discussed later.  
 
The human-machine rating divide 
A key assumption underlying ASA is that human rater scores for a particular test 
purpose interpret the desired language traits, the things we want to measure 
(Messick, 1989a). As a result, ASA have been designed to identify and weigh 
features of spoken responses measurable through computational means in a way 
that best predicts the human score (van Moere & Downey, 2016). To measure 
fluency, for example, statistical models calculate the optimum weighting of a range of 
machine-measurable features (such as speech rate, length of spoken turn, duration 
of hesitation) in such a way as they correspond most closely with human ratings for 
the same sample. Therefore, developers use human-machine reliability (the 
correlation between human and machine scores) as key evidence in validating their 
ASA solutions.  
 
A disadvantage of this assumption is that any errors or undesired variance in the 
design of task specifications and human rating scales will likely be amplified and 
operationalized in machine rating (Deane, 2013). To address these issues, and 
ensure we minimized variance in human-rated data, we spent significant time trialing 
and revising the rating scales using empirical evidence from learner responses, rater 
data, and rater perceptions (Figure 2). To ensure the reliability of the database used 
to train the machine, we conducted extensive human rater training and provided 
weekly feedback, ensured all responses were rated by 3 or more examiners, and 
used statistical tools, such as Many-Facet Rasch Measurement to reduce bias in the 
data.  

  
Fig 2. Simplified development and validation process for an autorated low-stakes 
test. 
 
Significant differences remain, however, between what can be measured by machine 
raters and human raters. Machines can measure quantifiable features (such as 
speech rates, unique word counts etc.); however, they are less able to interpret or 
infer speaker meaning or intent, assess the efficacy of argumentation, or consider 
content-related accuracy (Deane, 2013). These features are often explicit or implicit 
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factors considered by human raters when scoring criteria such as topic relevance, 
task completion, discourse and argumentation. As a result, a generally 
acknowledged limitation of ASA is construct underrepresentation (Deane, 2013). 
Furthermore, even where human-machine features appear aligned, there are often 
clear differences in how they are observed. For example, a machine may be able to 
identify the number of phoneme errors in a spoken turn, but a human rater is 
arguably better placed to evaluate their impact on comprehensibility. So, whilst the 
same trait is being targeted by human and machine, interpretation, and thus impact 
on construct validity and washback (Messick, 1989), are arguably very different.  
 
These challenges were particularly significant for us because the technologies used 
by our vendor were wrapped within a ‘black box’. This lack of ‘explainable’ artificial 
intelligence (AI), caused by both the high level of technical expertise needed to 
understand the processes involved and a general reluctance of vendors to share 
their ‘secrets’, meant we were left somewhat in the dark.  
 
An iterative approach to development and validation 
There is, however, much that test developers can still contribute to the optimization 
of autorater systems even without a technical understanding of machine learning 
(ML) and automated scoring used by the tech vendor. One of the most common 
adages in ML is ‘garbage in, garbage out’, meaning the quality of speaking scores is 
only as good as the data on which the machine is trained. In developing our test, we 
adopted an iterative process of optimizing the ML inputs through an analysis of the 
outputs (Figure 2, steps 3 & 4) to ensure the data we provided to the vendor was as 
fit for purpose as possible.  
  
One of the key iterations we made during the ML process was to improve database 
representation. For our lower stakes purpose, Foltz et al. (2013) suggest using a 
training database of at least 200-300 samples evenly distributed across the 
proficiency levels for each task. Statistical methodologies used in ASA require the 
comparison of responses in the training database with those of test takers, meaning 
that high-scoring user responses will resemble (contain similar features present in) 
high-scoring samples from the training database (Dikli, 2006). For this reason, the 
training database should contain a variety of valid approaches to address the prompt 
to avoid disadvantaging speakers using an unconventional but appropriate response. 
As a result, we built a training database of 440 responses from a wide range of 
speaker backgrounds, proficiency levels, locales etc., to improve the generalizability 
of results to the general test taking population. Figures 3 and 4 show how human-
machine reliability (the correlation of human and machine scores) improved (from rs 
0.8 in iteration 3 to rs 0.93 in iteration 4), particularly at the tails (highest and lowest 
scores), as a result of an improved distribution of proficiency. With the literature 
suggesting that rs 0.7 is minimally adequate for low-stakes purposes (Green, 2013), 
the ASA human-machine reliability of rs 0.93 for our test appears more than 
adequate for purpose.  
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Fig 3. Human-machine reliability at iteration 3. 
 

 
Fig 4. Human-machine reliability at iteration 4. 
 
Conclusions and future directions 
Whilst human-machine reliability is viewed as the key measure of whether ASA 
technology is working (Yan & Bridgeman, 2020), I would argue that more evidence is 
needed. A method commonly used is the concurrent validity study, which in this 
context measures the correlation between the scores a candidate receives on a 
machine-rated test (benchmarked for example to the CEFR) with the score that 
same candidate receives on a similarly benchmarked human-rated test. However, I 
would argue that such studies can be affected by a lack of equivalency, as even 
tests in the same language use domain (for example, tests of academic English) 
target different skills using different tasks. Therefore, the contribution of current 
validity studies towards the validity argument should be considered carefully.  
Another approach is to embed additional validation mechanisms within the machine 
learning process itself. For example, when we validated a pronunciation scorer 
linked to our test, outliers (responses that receive significantly different human and 
machine scores) were analysed individually by both our team and the vendor’s data 
scientists to identify sources of error and review machine learning and modelling 
techniques to address them.  
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Overall, though, I believe the most significant way to improve the validation of ASA is 
to compel edutech vendors to open up about the technologies powering their 
systems by sharing the sources of data used to train the models, the features of 
speech the ASA can measure, and the scoring accuracy (reliability) of the system 
across different speaking domains and user groups (such as age and ethnicity). 
Edutech vendors should also collaborate more closely and transparently with test 
developers and teaching practitioners to ensure the best possible alignment of 
assessment and pedagogical practices with technical capabilities (Xi, 2010). The 
inappropriate use of ASA technologies could result in serious consequences for 
learners, such as a reliance on inaccurate scoring and evaluation as a replacement 
for the richer feedback and interaction traditionally offered by examiners and 
teachers. As Messick (1989b: 11) reminds us, social consequences “clearly have 
implications for both the science and ethics of assessment”, and as such we should 
petition ASA vendors to play their part.  
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